Math Homework \#1

1. Let $0<a<\pi$ be some number, and define a 2π-periodic odd function $f(x)$ by its values on the interval $0 \leq x \leq \pi$:

$$
f(x)= \begin{cases}x / a & \text { if } 0 \leq x \leq a \\ 1-\frac{x-a}{\pi-a} & \text { if } a<x \leq \pi\end{cases}
$$

Calculate a Fourier series for $f(x)$. Does this series fail to converge at any point (why or why not)?

2. Suppose that the part of the graph of $f(x)$ above represents the initial temperature (in some units) of a metal rod. The temperature of the rod is governed by the heat equation $u_{t}=a u_{x x}$ for some constant a, and the ends of the rod are kept at a constant temperature of 0 . Give a Fourier series solution for the temperature of the rod as a function of time.
3. (Exercise 3 of section 2.2 in Folland's book) Calculate a Fourier series for the function $f(x)=|\sin (x)|$. Evaluate the series you obtain at $x=0$ and $x=\pi / 2$ to calculate the values of the following sums:
(a) $\sum_{k=1}^{\infty} \frac{1}{4 n^{2}-1}=$?
(b) $\sum_{k=1}^{\infty} \frac{(-1)^{n}}{4 n^{2}-1}=$?
4. Suppose two packs of playing cards are shuffled together, and a five card poker hand is dealt. Calculate the probabilities of the following hands:
(a) Five of a kind
(b) Four of a kind (or more)
(c) Three of a kind (or more)
(d) A pair (or more)

By "or more", I mean for example that you don't have to subtract of the chance of five of a kind when computing four of a kind.
5. (Problem 3.1 from A First Course in Probability by Sheldon Ross) Two fair dice are rolled. What is the conditional probability that at least one lands on 6 given that the dice land on different numbers?
6. In a certain town in the Wild West, 35% of the residents are farmers, 45% are gold miners, and 20% are outlaws. Many of the residents have wooden teeth, in fact this is the case for 15% of the farmers, 30% of the gold miners, and 70% of the outlaws. Given that a citizen has wooden teeth, what is the conditional probability that he is an outlaw?

